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LIQUID CRYSTALS, 1986, VOL. I ,  No. 6, 553-559 

Elastic constants of nematic solutions of rod-like and 
semi-flexible polymers 

by THE0 ODIJK 
Department of Physical and Macromolecular Chemistry, Gorlaeus Laboratories, 

University of Leiden, 2300 RA Leiden, The Netherlands 

(Received I May 1986; accepted 4 July 1986) 

Analytical expressions for the elastic constants of nematic polymer solutions 
are derived when the macromolecules are monodisperse rod-like, bidisperse rod- 
like or semi-flexible. These expressions are derived in the gaussian approximation 
so that they constitute exact leading terms of a general asymptotic expansion for 
high degree of nematic ordering although the results are justifiable only within the 
range of validity of the second virial approximation. The limiting forms are in 
complete agreement with recent numerical work for monodisperse rods. 

1. Introduction 
Because the Frank elastic constants of liquid crystals depend on derivatives of the 

particle distribution functions these material constants are expected to be quite 
sensitive to the degree of molecular order, probably more so than the usual statistical 
thermodynamic quantities. This expectation is even stronger for polymeric liquid 
crystals since they are, in the main, more highly ordered than their monomeric 
counterparts. In addition, the dependence on molar mass is very interesting because 
it is bound to reflect universal properties just as it does for dilute isotropic solutions 
of linear polymers. 

Here, our interest centres on sufficiently slender polymer chains, i.e. both the 
persistence length and the contour length are much larger than the effective diameter. 
Thus, we start from the classical virial expansion [7], formal expressions for the elastic 
constants having been derived first by Straley [2] and Priest [3]. The leading order 
solution of the Onsager integral equation for the orientational distribution function 
is simply gaussian and we show that it is feasible therefore to obtain the leading terms 
for the elastic constants for monodisperse and bidisperse rods. However, the calcula- 
tions for semi-flexible polymers of arbitrary contour length are very complicated 
although a scaling analysis is straightforward as will be shown. 

2. Monodisperse rods 
Our starting point is an expression for the dimensionless elastic constants K, first 

derived by Straley [2] and corrected by Lee and Meyer [4], 

Here, the actual K: = K,D/kT,  and c, = be is the number density 4 of the nematic 
phase, scaled with respect to the isotropic excluded volume b = (n/4)L2D with L 
the length and D the diameter of the rods (L  9 D).  The single-rod orientational 
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554 T. Odijk 

distribution functionf(cos 8) depends on the angle 8 between a rod and the director 
n. The coupling between two rods (denoted by indices 1 and 2; the solid angle 
R = (8,4) with 4 the angle between a test rod and a chosen axis perpendicular to the 
director) is proportional to the terms Hi specific to the type of deformation, and the 
orientational part of the excluded volume I sin y I were y is the angle between the two 
probe rods. 

Splay 

H I  = G(sin2 8,  cos’ 41 + sin2 O2 cos2 42), (2) 

H2 = G(sin2 8,  sin’ 4, + sin2 O2 sin2 $ 2 ) ,  ( 3 )  

H ,  = G(COS~ O1 + C O S ~  8 2 ) ,  (4) 

G = sin 6 ,  sin tI2 cos 4I cos 42. (5) 

These expressions are not very enlightening but, fortunately, they can be greatly 
simplified in view of the following points. 

Twist 

Bend 

(a) If we change to the new variables $, = ( p 2 ,  = 4, - Cp2 3 -4 ‘  the 
effect of cos Cp, cos’4, on the integration is the same as that of C O S ’ ~ ,  cos 42 
because 

Y = Y(4’) = Y(-4’) = Y($*). 
(b) Next, we write 

C O S ~ ,  = C O S ~ ,  cos@ - sin4,  sin 4‘, 
the sine term yields zero on integrating over 4’ because y = ~(COS 4’). 

(c) The integrations over 4, are elementary yielding the factors 
2 (cos 4, )  = +, (sin2$, C O S ’ ~ , )  = i, ( ~ 0 ~ ~ 4 , )  = 3. 8 

( d )  The combination sin 8, sin O2 cos 4’ is replaced by (cosy - cos 8, cos 02). 

In this way it is easy to show that, in equation ( l ) ,  the Hi can be replaced by 
obtained from equations (2)-(5) 

HI,O = 3H2,O 

H2,0 = sin2 8, (cos y - cos 8, cos e2), 
H ’ . ~  = cos2 61 (cOS - cos el COS 02). (8) 

K I  = 3K2.  (9) 

Accordingly, we have the exact relation 

Furthermore, we note that pre-averaging of equations (6)-(8) over the angle 4’ causes 
the elastic constants to vanish. The constants are non-zero because the 4’ distribution 
due to the 1 sin y I term is non-random although only slightly so. In general, this or 
analogous 4’ distributions should be sensitive to molecular structure, interactions, 
etc. 
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Elastic constants of nematic solutions 555 

It is now possible to calculate K, for any distribution that can be represented by 
the asymptotic form 

f(cos8) - exp (-$a0’) C , 
( k 1 0  ) 

a % 1 (0 Q 8 < inn; otherwise the mirrored version). (10) 
Here, a and ct are parameters which could be obtained, for example, by minimizing 
the free energy. Hence, if we expand all functions in the integrand of equation (1) for 
small 0 , ,  e2 and y ,  all that is needed are gaussian averages of the type 

(1 1) ( 8 : m 0 T y 2 ~ f I  

where 

g(8,) = (c) exp(-$a8’), (0 < 0 Q +n) (a  b l), 

We can evaluate equation (1 1) for any m, n and p by appealing to an interesting 
theorem deduced by Onsager [ l ]  

J (a , ,  a2) = dR, dR2 cosh (a, cos 8, + a2 cos 8,) F(sin y), Is 
y = n  

d(F(sin y)) cosh (a: + a; + 2a, a2 cos y) ’ ” .  (13) 

The function F must depend solely on sin y and furthermore F(0) = 0. 
Let us outline the calculation of several averages. Firstly, we let 

F(x)  = x2P+I; 

then ( y ) ? ”  is obtained from equation (13) by retaining the leading term of the 
asymptotic expansion of J for large a = a, = a2,  

( y 2 ~ + l ) o  = 4 ~ + i r ( ~  + +)a -~ - : .  (14) 

The quantity (y2p+18:)o can be derived by differentiating equation (14) in addition to 

( y 2 p + l ) o  = m, dn2 y 2 ~ + ~ g ( ~ , ) g ( e 2 ) ,  jJ 
using equation (12). Note that this is possible because differentiation and asymptotic 
expansion are commuting operations. Cross terms like (8:0:y), are a little more 
tedious to calculate. We have to differentiate both the formal expression for ( Y ) , ~  
with respect to a, and a2 and the explicit one derived from equation (1 3) 

Other averages are obtained in the same way. In this paper we do not go beyond the 
purely gaussian approximation, the averages we need are given in the Appendix. 
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556 T. Odijk 

From equations (I), (6)-(9) and (15) we find the leading terms for the elastic 
constants, eliminating a via the relation a = 4 n - I ~ :  which is valid in the gaussian 
approximation [ 1, 51 

K ,  = 4np2c:a2 (i$:(y2 - e: - e:)),, 

In the table equations (16) and (17) are compared with K2,N and K3,N 
obtained numerically by Lee and Meyer [4]. For large ca, the ratios K2/K,, and K3/K3, 
converge nicely to unity. Note that the correction factors should be of the form 
(1 + constant c;' + . . . ) as is indeed the case. Furthermore, the numerical work 
satisfies K ,  = 3K,. 

Ratios of the elastic constants given by equations (16) and (17) to  those calculated numerically 
[4]. They converge to unity as c, increases. The first order deviation from unity is linear 
in c i 2  (or a - I )  in accord with the general form of equation (10). 

Ca K 2 / K 2 , N  

3.6 
4 
4.5 
5 
5.5 
6 
6.5 
7 
7.5 

2.16 
1.51 
1.30 
1.21 
1.15 
1.12 
1.10 
1.08 
1.07 

K 3 / K 3 , N  

4.05 
2.19 
1.66 
1.44 
1.32 
1.24 
1.19 
1.15 
1.12 

3. Bidisperse rods 
A theory of the nematic ordering of bidisperse rod-like macro-molecules has been 

developed by Odijk and Lekkerkerker [5]. The system is now characterized by the 
parameters a,, a2, Q = a,/a,, rod lengths L, and L,, q = L2/L , ,  rod diameter D, the 
total number density c, and the mole fraction x of longer rods (index 1 denotes shorter 
rods; 2 longer rods). In the second virial and gaussian approximations we have [5] 
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Elastic constants of nematic solutions 557 

With the help of various gaussian averages (cf. the Appendix) it is straightforward to 
extend the results of the previous section to obtain 

KI = 3K2, (20) 

with 

and 

4. Semi-flexible polymers 
When polymers can no longer be regarded as rods, i.e. when the contour length 

is longer than the deflection length [6],  we have to analyse the configurational statistics 
of a semi-flexible chain in a space-dependent nematic field in order to obtain formal 
expressions analogous to equation (1). Such an analysis is complicated even for 
constant nematic fields (cf. [7-91). Here, we assess the elastic constants qualitatively 
by extending the scaling analysis of [6].  

Firstly, a qualitative derivation of the elastic constants for rods is useful. If the 
director is forced to turn through a slight angle E ,  the original, typically small angle 
el, of rod 1 is slightly altered to 6; 

6i2 = 6: + E’ - 286, cos 41, 
where the angle Cpl is measured with respect to the plane of the two directors. Thus, 
the first order change in the gaussian distribution (cf. equation (12)) can be written 
as 

sg- 1: (.e,ECOS+l)~ 
so that the increment in excluded volume between two probe rods 1 and 2 is given by 

AB2 = L2D JT do, dQ2 IYI m e , )  &-(62), 

N E ~ L ~ D u ~ / ~ ,  (23) 
(if the solution is nematic). The resulting increment in free energy density is 

(24) - N kTe2AB2 1: (kTD-’)c;E2u1/’L-’. 
V 

When the deformation is a bend, we have 

c3 = Lln x V x nl 

otherwise the two test rods would not interact. For twist, we must have 

e2 N Lu-’/’In.V x nl (26) 
because the rods interact only when the typical distance perpendicular to both axes 
is of order yL. For splay, an analogous relation holds. The elastic constants derivable 
from the free energy density (cf. equation (24)) are in agreement with equations 
( 15)-( 1 7). 
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558 T. Odijk 

In [ti], the deflection length 1 was introduced for nematically confined polymers 

1 = Pa-I, (27) 

where P is the persistence length; for an extensive review, see [9]. Each chain can be 
thought of as a sequence of L / 1  units. Hence, a chain will align on the average along 
some tortuously changing director field but only for length scales longer than 1. 
Clearly, we are dealing with a solution containing effectively NL1-I rod-like units 
where Nis the number of polymer molecules in solution. Hence, whenever L % 1, we 
can write 

K2 N ~ : 1 ~ D ~ a - ~ ~ ~ ,  

(28) 

K3 N aK2 N c , ,~ .  (29) 

2 p4D2a-5/2 113 
QP C a * P ,  

The indices 1 and P in Q and c, refer to counting with the respective segments, i.e. 
Q ,  = NLjlV and ca,, = (n/4)12De, where I denotes either 1 or P and V is the volume 
of the system. The relation a3I2 N c,.~ [6] has also been employed. 

The splay modulus deserves special attention. A tacit assumption when writing 
equation (23) is that the spatial density of macromolecules remains homogeneous 
after the director field has been altered. This assumption is envisaged to be reasonable 
for the bend and twist distortions but is untenable otherwise in view of the ideas of 
de Gennes [lo] and Meyer [l I]. Indeed, naive application of the reasoning behind 
equations (28) and (29) leads to the incorrect result K I  N K2 N c$ whereas K ,  is 
certainly contour-length dependent [lo, 1 I]. Our scaling arguments do not, however, 
influence Meyer’s analysis of the distribution of chain ends under splay; slight 
fluctuations in chain shapes will not change figure 3 of [ I  I]. We stress also that the 
dimensionless splay constant derived by Meyer [ 111 

is almost identical with equation (15) for rods, as it may be expected to be (Meyer’s 
d = (eLL)-1’2) .  De Gennes’ result [lo] disagrees with equations (15) and (24) confirm- 
ing Meyer’s criticism of it. The author hopes to complete a full statistical mechanical 
analysis of all three elastic constants for worm-like chains in the future. 

5. Concluding remarks 
Let us stress the limitations of the calculations expounded in this analysis. Firstly, 

the second virial approximation must hold (a  e (L/D)’,  cf. [9]; for long worm- 
like chains, c1 6 (P/D)’) .  The calculations for rods are useful only when L 5 +A 
(= P/2a). In practice, extremely stiff biopolymers satisfy this condition [9]. The 
gaussian approximation itself should be viewed as a limiting law towards which other 
theories or numerical calculations ought to converge. Tedious preliminary work 
shows that, eventually, it will be possible to go beyond the gaussian approximation 
and formulate analytical theories very close to the numerical data. 

At the present stage of experimental work any comparison of theory with experi- 
ments must be viewed as very tentative. Thus, it is doubtful whether tobacco mosaic 
virus is long enough to justify the use of the second virial approximation and it is 
certain that poly-y-benzyl-L-glutamate is too short for the limit of very long contour 
lengths to be valid. Nevertheless, the ratios K3/K2  = 43 and K , / K ,  = 2.5 for tobacco 
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Elastic constants of nematic solutions 559 

mosaic virus, from [ 121, and K3 /Kz  = 13 for poly-y-benzyl-L-glutamate from [ 131 are 
not too far from the ratios given by equations (16), (17), (28) and (29) 

8a 32ct 
7 772 

K3/K2 = - = - ‘V 17; KI/K2 = 3 

and 

K3/K2 = a N 6.5 

respectively. These cc values are taken from [9]. In a qualitative sense we can explain 
why partial flexibility lowers K3 / K 2 ;  simply because the ordering parameter a 
decreases. 

The author is grateful to Henk Lekkerkerker for extensive discussions on liquid 
crystals and related topics. 
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